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Disclaimer

"Ce qui est simple est toujours faux.
Ce qui ne l'est pas est inutilisable.”

Paul Valéry
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Introduction

In statistical learning, the challenge nowadays is to learn from data
which are:

® high-dimensional (p large),
B big or as stream (n large),
m evolutive (evolving phenomenon),

m heterogeneous (categorical, functional, networks, texts, ...)

In any case, the understanding of the results is essential:
® the practitioners are interested in visualizing their data,
= to have a selection of the relevant original variables for interpretation,

® and to have a probabilistic model supposed to have generated the data.
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Introduction

Principal component analysis (PCA) is probably the most popular tool of
statistical data analysis, with applications in a wide range range of fields:

psychology: children test results (Hotelling, '33),
finance: study of volatility dynamics (Egloff et al., '10),

image processing: from eigenfaces (Turk and Pentland, '91) to deep
learning (Chan et al., '15),

mass spectrometry (Ostrowski et al., '04),

genomics: DNA microarray data (Rignér, '08).
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Introduction

Principal component analysis (PCA) is probably the most popular tool of
statistical data analysis, with applications in a wide range range of fields:

® psychology: children test results (Hotelling, '33),
® finance: study of volatility dynamics (Egloff et al., '10),

® image processing: from eigenfaces (Turk and Pentland, '91) to deep
learning (Chan et al., '15),

® mass spectrometry (Ostrowski et al., '04),
m genomics: DNA microarray data (Rignér, '08).

Many modern applications fall into the "ultra-high dimension” case with
much more variables than observations (n << p) !
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A motivating example: NMR spectroscopy

Early prediction of Chronic Kidney
Disease from Metabolomics:

® project with Renal Division of
Hopital Européen Georges

Pompidou in Paris, \

® urine samples from n =110 ) L] !
tient d with NMR o U
patients measured wi | ahddd ‘M

spectroscopy,

0

hetib sl
o

0 o

® each spectrum is described by
p = 816 variables.

The goal is to isolate some urinary metabolites (associated with variables)
which are early-stage markers of the disease.

————t
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Basics of PCA and sparsity
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Principal component analysis

Let us consider a n x p data matrix X = (xg, ..., x,) " that one wants to
project onto a "good" d-dimensional subspace.

Principal component analysis (PCA):

® the optimal choice is spanned by the top-d eigenvectors of X7 X,

m PCA can also be view as a factorization into a low-rank decomposition.

~
~

Figure: PCA viewed as a low-rank decomposition.




Sparse principal component analysis

However, regular PCA fails when p is large (Johnstone & Lu '09):

® sparse versions of PCA (SPCA, Zou et al., '06) have beed developed
consequently,

® sparse PCA allows to regularize the problem but does not improve
significantly the interpretation of the results.

~
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Figure: Sparse PCA viewed as a low-rank decomposition.




Globally sparse principal component analysis

Our objective is to truly perform unsupervised variable selection within PCA:

® the projection matrix W should be row-sparse, leading to the globally
sparse PCA problem,

m this solution allows to identify the relevant original variables while
reducing the dimensionality.

.zg

Figure: Globally sparse PCA viewed as a low-rank decomposition.
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Bayesian variable selection in PCA
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Bayesian variable selection in PCA
Global framework and a first attempt...




e
Probabilistic PCA

Let us consider probabilistic PCA (PPCA, Tipping & Bishop, '99) which
assumes that each observation is generated by the following model:

x=Wy+e (1)

= where y ~ N(0, 14) is a low-dimensional Gaussian latent vector,
® W is a p x d parameter matrix called the loading matrix,

® and & ~ N(0,021,) is a Gaussian noise term.
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Probabilistic PCA

Let us consider probabilistic PCA (PPCA, Tipping & Bishop, '99) which
assumes that each observation is generated by the following model:

x=Wy+e (1)

= where y ~ N(0, 14) is a low-dimensional Gaussian latent vector,
® W is a p x d parameter matrix called the loading matrix,
® and & ~ N(0,021,) is a Gaussian noise term.

This model is equivalent to PCA in the following sense:

Theorem [Theobald '75, Tipping & Bishop '99]. If A is the p x d
matrix of ordered principal eigenvectors of X7 X and if A is the d x d
diagonal matrix with corresponding eigenvalues, a maximume-likelihood
estimator of W is

Wy = A(A — 0214)Y/2. 2)
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Bayesian variable selection for PPCA

We propose to handle variable selection within PPCA:

x=VWy +e 3)

® where V = diag(v) such that the matrix VW is row-sparse, leading to
global sparsity,

m the nonzero entries of the binary vector v € {0, 1}” correspond to
relevant variables,

® and g = ||v]|o is the number of relevant variables.




Bayesian variable selection for PPCA

We propose to handle variable selection within PPCA:

x=VWy +e 3)

® where V = diag(v) such that the matrix VW is row-sparse, leading to
global sparsity,

m the nonzero entries of the binary vector v € {0, 1}” correspond to
relevant variables,

® and g = ||v]|o is the number of relevant variables.

To perform Bayesian model selection:
= we impose Gaussian priors w;; ~ N(0,a~2) on the loadings,
® and chose the hyper-parameters that maximizes the marginal likelihood:

p(Xlv,,0) = [ plxilv, 0, 0) = H/R p(xiW. v, 0,0)p(W)dW
i=1 i=1 /R
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Bayesian variable selection for PPCA

Classical Bayesian approximations are usually used:
m Laplace (Bishop '99, Minka '00),
® variational (Archambeau & Bach, '09).




Bayesian variable selection for PPCA

Classical Bayesian approximations are usually used:
m Laplace (Bishop '99, Minka '00),
® variational (Archambeau & Bach, '09).

In our case, we reach the following expression:

Theorem. The density of x is given by

lIxg|13
p(x|v, o, 0) = e~ 207 g9 P(27)P/2

00 q/2 p—o2u?
1—q/2 uice
[1xv]|2 q//o WJq/z—l(UHXvHZ)dU (4)

where J, is the 1st type Bessel function of order v.
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Bayesian variable selection for PPCA

Classical Bayesian approximations are usually used:
m Laplace (Bishop '99, Minka '00),
® variational (Archambeau & Bach, '09).

In our case, we reach the following expression:

Theorem. The density of x is given by

lIxg|13
p(x|v, o, 0) = e~ 207 g9 P(27)P/2

00 q/2 p—o2u?
1—q/2 uice
[1xv]|2 q//o WJq/z—l(UHXvHZ)dU (4)

where J, is the 1st type Bessel function of order v.

Problem: the marginal likelihood p(X|v, a, o) is numerically intractable !
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Bayesian variable selection in PCA

A closed-form marginal likelihood for noiseless PPCA




The noiseless PPCA model

PPCA allows to recover the principal components even in the limit noiseless
setting o — 0 | (Roweis '98)

In order to obtain a tractable likelihood, we therefore consider the following
model (globally sparse PPCA):

x = VWy + Ve; + Ve, (5)

= g1 ~ N(0,0%1,) is the noise of the inactive variables,

= g5 ~ N(0,031,) is the noise of the active variables.
21p

We want to investigate the noiseless case o, — 0.
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The noiseless PPCA model

In the context of the globally sparse (noiseless) PPCA model, we
demonstrate that:

Theorem. In the noiseless limit oo — 0, x converges in probability to
a random variable X whose density is

p(X|v, o, 02) = N(%g0, 011, q)Bessel (%y|1/a, (d — q)/2).  (6)

This theorem allows us to efficiently compute the noiseless marginal
log-likelihood defined as

n
L(X,v,®,01) = Z log P(X = x;|v, a, 01).
i=1

18



Hyperparameter optimization

It remains to propose estimates for hyper-parameters:

® For o1: we propose to simply use the ML estimator from the ideal
non-noiseless PPCA model, which is the mean of the p — d smallest
eigenvalues of X7 X.

® For a: if v is known, the regularization parameter can be optimized
efficiently using a gradient ascent approach (we proved that the objective
function is univariate and concave !).




Hyperparameter optimization

It remains to propose estimates for hyper-parameters:

® For o1: we propose to simply use the ML estimator from the ideal
non-noiseless PPCA model, which is the mean of the p — d smallest
eigenvalues of X7 X.

® For a: if v is known, the regularization parameter can be optimized
efficiently using a gradient ascent approach (we proved that the objective
function is univariate and concave !).

A last (big) issue:
= find the optimal model, we have to find the binary vector v which has the
highest marginal likelihood,

m problem: there are 2P possible models v !

Our solution:
® relax the model and rank the candidate models,
= compute the marginal likelihood of a family of p nested models.

19
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Bayesian variable selection in PCA

High-dimensional inference through a continuous relaxation




The relaxed gsPPCA model

We replace v by a continuous parameter u € [0,1]”. Denoting U = diag(u),
the relaxed gsPPCA model becomes:

x=UWy +e. )




The relaxed gsPPCA model

We replace v by a continuous parameter u € [0,1]”. Denoting U = diag(u),
the relaxed gsPPCA model becomes:

x=UWy +e. @)
We write the marginal log-likelihood as:

log(p(X[0)) = L(q(Z);0) + KL(q(2)||p(Z]X,0)),

® where § = (u,,0) and Z = (Y, W) are the latent variables
= L(q(Z);0) = [, q(Z)log(p(X, Z|0)/q(Z))dZ is a lower bound,

= KL(q(2)llp(Z]X,0)) = = 3_7 q(Z) log(p(Z]X,0)/q(Z)) is the KL
divergence between g(Z) and p(Z|X, 6).
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The relaxed gsPPCA model

We replace v by a continuous parameter u € [0,1]”. Denoting U = diag(u),
the relaxed gsPPCA model becomes:

x=UWy +e. @)
We write the marginal log-likelihood as:

log(p(X[0)) = L(q(Z);0) + KL(q(2)||p(Z]X,0)),

® where § = (u,,0) and Z = (Y, W) are the latent variables
= L(q(Z);0) = [, q(Z)log(p(X, Z|0)/q(Z))dZ is a lower bound,

= KL(q(2)llp(Z]X,0)) = = 3_7 q(Z) log(p(Z]X,0)/q(Z)) is the KL
divergence between g(Z) and p(Z|X, 6).

The VEM algorithm:
= E step: £ is maximized over q (log g7 (Z;) = Eiyflog p(X, Z|0)] + c),

= M step: £(q*(Z),0°9) is now maximized over

21
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How to come back to the binary problem?

Once the VEM algorithm has converged, we still need to transform the
continuous vector u into a binary one:

® 3 family of p nested models is built using the order of the coefficients of
i as a way of ranking the variables,

® the marginal likelihood of the non-relaxed model (computed using the
formula of Theorem 3) is then maximized over « for this family of
models,

® the model ¥ with the largest marginal likelihood is kept.




The gsPPCA algorithm

Algorithm 1: GSPPCA algorithm for unsupervised variable selection

Input: data matrix X € R"*P, dimension of the latent space d € N*
Output: sparsity pattern v € {0,1}?

// VEM algorithm to infer the path of models
Initialize w, o, 0, oy, ...y b, My, ... My, Sy, .., S, and 3
repeat

E-step from Proposition 5;

M-step from equations (13),(14),(15);

until convergence of the variational free energy;

// Model selection using the exact marginal likelihood
Compute o7 ;
for k = 1..p do
Compute v,
L Find ay, = argmax, o{a — L(X,v#¥), a,01)} using gradient ascent ;

q= argmaxlSkSpﬁ(X,v(k), g, 01) 3
vV = v(‘I) ;

23
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Numerical experiments
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An introductory example

As an educational example:
® we simulated a data set according to model (3),
= with n =50, p =30, d =5 and g = 10,
® such that v =(1,...,1,0,...,0).
—— ——
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Figure: Variable selection with gsPPCA on the introductory example.




Benchmark: model selection

We here compare gsPPCA with reference methods:
= we simulated a series of data sets with a Toeplitz correlation structure

and either a Gaussian or Laplace noise,
= with p =200, d = 10, g = 20 and varying sample sizes n = 40, ..., 200,

m comparison with SPCA (Zou et al., '06) and SSPCA (Jenatton
et al., '09).

Table 1: F-scorex 100 for the model selection experiment of subsection 3.3 with Gaussian

noise

n=p/5 n=p/4 n=[p/3] n=p/2 n=p
SPCA 207 +£0.7  21.2+0.7 215+07 21.7+05 252+21
SSPCA | 66.7£21.4 715+20 86.7+142 956+£89 O82+L7.2
GSPPCA | 86.8L-7.06 93.9L3.66 972+255 992+14 1+0

Table 2: F-scorex100 for the model selection experiment of subsection 3.3 with Laplacian

noise
n=p/5 n=p/4 n=|p/3 n=p/2 n=p
SPCA 20.8 £ 0.6 21.3 £ 0.6 21.6 £0.8 21.8 £0.6 253+ 1.7
SSPCA 60.6 224 63.9+252 82.7+181 94.2+10.2 974+95
88 £ 5.95 99.2+14

742+10 776+9.09 79.7+8.38

GSPPCA
26



Benchmark: global vs. local sparsity

Here, we illustrate the difference between global and local sparsity:

® on a set of OCR images from
Larochelle et al. (2007), which
are variations around the famous
MNIST data, S

= we have 3 types of images:

O handwritten 7s, shen

0 7s with noisy background,

0 7s with natural image
background,

® in each case, n =500 and
p = 758.

GSPPCA
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Application to NMR spectroscopy




Problem and data

We focus here on the diagnostic of chronic kidney disease (CKD):

m data come from the Nephrology Department of the Georges Pompidou
European Hospital (Paris, France),

® collaboration with Pr. Ph. Beaune, Dr. N. Pallet (Biochimie, HEGP) &
Dr. G. Bertho (Plateforme RMN, Paris Descartes),

® the cohort is made of 110 CKD patients followed for renal biopsy
between 2013 and 2014,

= for each patient, urine and serum samples were collected.

Beyond the diagnostic problem, the main goal of study is to isolate some
urinary metabolites which are early-stage markers of the disease (class #3).

29



Problem and data

The CKD data set:

® 4 stages of CKD severity are
defined according to creatinine
rates,

® each urine sample was measured
at 300K on a Bruker Avance Il
spectrometer,

= we end up with 110 spectra of
816 variables split into 4 classes.
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Globally sparse HDDA

We introduce a new globally sparse discriminant analysis technique:

m HDDA (Bouveyron et al, '06) is a discriminant analysis method for
high-dimensional data which assumes that the data of each class live in a
specific low-dimensional subspace,

m gsHDDA combines the idea of gsPPCA and HDDA.




Globally sparse HDDA

We introduce a new globally sparse discriminant analysis technique:

m HDDA (Bouveyron et al, '06) is a discriminant analysis method for
high-dimensional data which assumes that the data of each class live in a
specific low-dimensional subspace,

m gsHDDA combines the idea of gsPPCA and HDDA.

The gsHDDA model assumes that:

Yizek = ViWiX + ik + e,

= where ||diag(Vi)llg = gk, X|z=k ~ N(0,Ax) and €/z— ~ N (0, Bilp),
= such that Yjz—x ~ N(pu, X«) where X = Wi A W + Bilp has a
low-rank structure.

31



Classification results

We first evaluate the diagnostic ability of gsHDDA, in comparison with
reference methods:

CV correct classification rate

cer
o

03

02

T
LDA PLSDA HDDA gsHDDA

Figure: Correct classification rate for gsHDDA and competitors on CKD data.




Variable selection results
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Figure: Variable selection for each class of the CKD data using gsHDDA.
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Variable selection results
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Figure: Specific variable selection for each class of the CKD data using gsHDDA.
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Conclusion and further work
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Conclusion and further work

The proposed approach gsPPCA:

= we proposed a Bayesian procedure that allows to obtain several sparse
components with the same sparsity pattern,

m this allows the practitioner to identify the original variables which are
relevant to describe the data,

= we provided the first exact computation of the marginal likelihood of a
Bayesian PCA model,

® 3 simple relaxation allows to find a path of models using a variational
expectation-maximization algorithm.

Working in progress and further work:

m gsHDDA for class-specific variable selection and classification,

m selection of the intrinsic dimensionality d of the data (work in progress),
= mixture of gsPPCAs for clustering of high-dimensional data.

Preprint & R code: up5.fr/GSPPCA
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