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Disclaimer

”Ce qui est simple est toujours faux.
Ce qui ne l’est pas est inutilisable.”

Paul Valéry
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Introduction

In statistical learning, the challenge nowadays is to learn from data
which are:
� high-dimensional (p large),
� big or as stream (n large),
� evolutive (evolving phenomenon),
� heterogeneous (categorical, functional, networks, texts, ...)

In any case, the understanding of the results is essential:
� the practitioners are interested in visualizing their data,
� to have a selection of the relevant original variables for interpretation,
� and to have a probabilistic model supposed to have generated the data.
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Introduction

Principal component analysis (PCA) is probably the most popular tool of
statistical data analysis, with applications in a wide range range of fields:
� psychology: children test results (Hotelling, ’33),
� finance: study of volatility dynamics (Egloff et al., ’10),
� image processing: from eigenfaces (Turk and Pentland, ’91) to deep

learning (Chan et al., ’15),
� mass spectrometry (Ostrowski et al., ’04),
� genomics: DNA microarray data (Rignér, ’08).

Many modern applications fall into the ”ultra-high dimension” case with
much more variables than observations (n << p) !
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A motivating example: NMR spectroscopy

Early prediction of Chronic Kidney
Disease from Metabolomics:
� project with Renal Division of

Hôpital Européen Georges
Pompidou in Paris,

� urine samples from n = 110
patients measured with NMR
spectroscopy,

� each spectrum is described by
p = 816 variables.

The goal is to isolate some urinary metabolites (associated with variables)
which are early-stage markers of the disease.
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Principal component analysis

Let us consider a n × p data matrix X = (x1, ..., xn)T that one wants to
project onto a "good" d-dimensional subspace.

Principal component analysis (PCA):
� the optimal choice is spanned by the top-d eigenvectors of XTX,
� PCA can also be view as a factorization into a low-rank decomposition.

Hello WorldHello WorldHello World

≈X W
Y

T

Figure: PCA viewed as a low-rank decomposition.
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Sparse principal component analysis
However, regular PCA fails when p is large (Johnstone & Lu ’09):
� sparse versions of PCA (SPCA, Zou et al., ’06) have beed developed

consequently,
� sparse PCA allows to regularize the problem but does not improve

significantly the interpretation of the results.

Hello WorldHello WorldHello World

X ≈ W

Y

Hello WorldHello WorldHello World

X W

Y

≈

T

Figure: Sparse PCA viewed as a low-rank decomposition.
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Globally sparse principal component analysis
Our objective is to truly perform unsupervised variable selection within PCA:
� the projection matrix W should be row-sparse, leading to the globally

sparse PCA problem,
� this solution allows to identify the relevant original variables while

reducing the dimensionality.

Hello WorldHello WorldHello World

X ≈ W

Y

Hello WorldHello WorldHello World

X W

Y

≈T

Figure: Globally sparse PCA viewed as a low-rank decomposition.
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Probabilistic PCA
Let us consider probabilistic PCA (PPCA, Tipping & Bishop, ’99) which
assumes that each observation is generated by the following model:

x = Wy + ε (1)

� where y ∼ N (0, Id) is a low-dimensional Gaussian latent vector,
� W is a p × d parameter matrix called the loading matrix,
� and ε ∼ N (0, σ2Ip) is a Gaussian noise term.

This model is equivalent to PCA in the following sense:

Theorem [Theobald ’75, Tipping & Bishop ’99]. If A is the p×d
matrix of ordered principal eigenvectors of XTX and if Λ is the d × d
diagonal matrix with corresponding eigenvalues, a maximum-likelihood
estimator of W is

WML = A(Λ− σ2Id)1/2. (2)
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Bayesian variable selection for PPCA
We propose to handle variable selection within PPCA:

x = VWy + ε (3)

� where V = diag(v) such that the matrix VW is row-sparse, leading to
global sparsity,

� the nonzero entries of the binary vector v ∈ {0, 1}p correspond to
relevant variables,

� and q = ||v||0 is the number of relevant variables.

To perform Bayesian model selection:
� we impose Gaussian priors wij ∼ N (0, α−2) on the loadings,
� and chose the hyper-parameters that maximizes the marginal likelihood:

p(X|v, α, σ) =
n∏

i=1

p(xi |v, α, σ) =
n∏

i=1

∫
Rp×d

p(xi |W, v, α, σ)p(W)dW
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Bayesian variable selection for PPCA

Classical Bayesian approximations are usually used:
� Laplace (Bishop ’99, Minka ’00),
� variational (Archambeau & Bach, ’09).

In our case, we reach the following expression:

Theorem. The density of x is given by

p(x|v, α, σ) = e−
||xv̄||

2
2

2σ2 σq−p(2π)−p/2

||xv||1−q/22

∫ ∞
0

uq/2e−σ
2u2

(1 + (u/α)2)d/2
Jq/2−1(u||xv||2)du (4)

where Jν is the 1st type Bessel function of order ν.

Problem: the marginal likelihood p(X|v, α, σ) is numerically intractable !
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The noiseless PPCA model

PPCA allows to recover the principal components even in the limit noiseless
setting σ → 0 ! (Roweis ’98)

In order to obtain a tractable likelihood, we therefore consider the following
model (globally sparse PPCA):

x = VWy + V̄ε1 + Vε2 (5)

� ε1 ∼ N (0, σ21Ip) is the noise of the inactive variables,
� ε2 ∼ N (0, σ22Ip) is the noise of the active variables.

We want to investigate the noiseless case σ2 → 0.
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The noiseless PPCA model

In the context of the globally sparse (noiseless) PPCA model, we
demonstrate that:

Theorem. In the noiseless limit σ2 → 0, x converges in probability to
a random variable x̃ whose density is

p(x̃|v, α, σ21) = N (x̃V̄|0, σ1Ip−q)Bessel(x̃V|1/α, (d − q)/2). (6)

This theorem allows us to efficiently compute the noiseless marginal
log-likelihood defined as

L(X, v, α, σ1) =
n∑

i=1

logP(x̃ = xi |v, α, σ1).
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Hyperparameter optimization
It remains to propose estimates for hyper-parameters:
� For σ1: we propose to simply use the ML estimator from the ideal

non-noiseless PPCA model, which is the mean of the p − d smallest
eigenvalues of XTX.

� For α: if v is known, the regularization parameter can be optimized
efficiently using a gradient ascent approach (we proved that the objective
function is univariate and concave !).

A last (big) issue:
� find the optimal model, we have to find the binary vector v which has the

highest marginal likelihood,
� problem: there are 2p possible models v !

Our solution:
� relax the model and rank the candidate models,
� compute the marginal likelihood of a family of p nested models.
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The relaxed gsPPCA model
We replace v by a continuous parameter u ∈ [0, 1]p. Denoting U = diag(u),
the relaxed gsPPCA model becomes:

x = UWy + ε. (7)

We write the marginal log-likelihood as:

log(p(X |θ)) = L(q(Z ); θ) + KL(q(Z )||p(Z |X , θ)),

� where θ = (u, α, σ) and Z = (Y ,W ) are the latent variables
� L(q(Z ); θ) =

∫
Z
q(Z ) log(p(X ,Z |θ)/q(Z ))dZ is a lower bound,

� KL(q(Z )||p(Z |X , θ)) = −∑
Z q(Z ) log(p(Z |X , θ)/q(Z )) is the KL

divergence between q(Z ) and p(Z |X , θ).
The VEM algorithm:
� E step: L is maximized over q (log q∗j (Zj) = Ei 6=j [log p(X ,Z |θ)] + c),

� M step: L(q∗(Z ), θold) is now maximized over θ
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How to come back to the binary problem?

Once the VEM algorithm has converged, we still need to transform the
continuous vector u into a binary one:

� a family of p nested models is built using the order of the coefficients of
û as a way of ranking the variables,

� the marginal likelihood of the non-relaxed model (computed using the
formula of Theorem 3) is then maximized over α for this family of
models,

� the model v̂ with the largest marginal likelihood is kept.
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The gsPPCA algorithm
Globally Sparse Probabilistic PCA

Algorithm 1: GSPPCA algorithm for unsupervised variable selection
Input: data matrix X ∈ Rn×p, dimension of the latent space d ∈ N∗

Output: sparsity pattern v ∈ {0, 1}p

// VEM algorithm to infer the path of models
Initialize u, α, σ,µ1, ...,µn,m1, ...,mp,S1, ...,Sp and Σ ;
repeat

E-step from Proposition 5;
M-step from equations (13),(14),(15);

until convergence of the variational free energy ;

// Model selection using the exact marginal likelihood
Compute σ1 ;
for k = 1..p do

Compute v(k);
Find αk = argmaxα>0{α "→ L(X,v(k), α, σ1)} using gradient ascent ;

q = argmax1≤k≤pL(X,v(k), αk, σ1) ;
v = v(q) ;

Once the model is estimated, the globally sparse principal components of X can be com-
puted by simply performing PCA on Xv. This type of post-processing is similar to the
variational renormalization introduced by Moghaddam et al. (2005). In the case of local
sparsity, variational renormalization can be achieved using an alternating maximization
scheme (Journée et al., 2010). However, the global sparsity structure greatly simplifies this
procedure by reducing it to performing PCA on the relevant variables.

2.6 Links with other sparsity-inducing Bayesian procedures

Spike-and-slab models Model (3) may be rewritten x = W̃y+ε where W̃ = VW. The
prior distribution for the parameter W̃ is similar to the spike-and-slab prior introduced by
Mitchell and Beauchamp (1988) in a linear regression framework. Indeed, each coefficient
w̃ij follows a priori either a Dirac distribution with mass at zero (if vi = 0) which is usually
called the spike or a Gaussian distribution with variance 1/α2 (if vi = 1) which is usually
called the slab. However, contrary to standard spike-and-slab models which would assume a
product of Bernoulli prior distributions over v, we see v here as a deterministic parameter to
be inferred from the data. It is worth noticing that spike-and-slab priors have already been
applied to locally sparse PCA by Lázaro-Gredilla and Titsias (2011) and Mohamed et al.
(2012).

Automatic relevance determination Introduced in the context of feedforward neu-
ral networks (MacKay, 1994; Neal, 1996), automatic relevance determination (ARD) is a
popular empirical Bayes procedure to induce sparsity. ARD was applied to Bayesian PCA
models together with VEM algorithms in order to obtain automatic dimensionality selection
(Bishop, 1999b) of local sparsity (Archambeau and Bach, 2009). In order to obtain global

9
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An introductory example
As an educational example:
� we simulated a data set according to model (3),
� with n = 50, p = 30, d = 5 and q = 10,
� such that v = (1, ..., 1︸ ︷︷ ︸

p

, 0, ..., 0︸ ︷︷ ︸
p−q

).
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Figure: Variable selection with gsPPCA on the introductory example.
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Benchmark: model selection
We here compare gsPPCA with reference methods:
� we simulated a series of data sets with a Toeplitz correlation structure

and either a Gaussian or Laplace noise,
� with p = 200, d = 10, q = 20 and varying sample sizes n = 40, ..., 200,
� comparison with SPCA (Zou et al., ’06) and SSPCA (Jenatton

et al., ’09).

Globally Sparse Probabilistic PCA

Table 1: F-score×100 for the model selection experiment of subsection 3.3 with Gaussian
noise

n = p/5 n = p/4 n = ⌊p/3⌋ n = p/2 n = p

SPCA 20.7 ± 0.7 21.2 ± 0.7 21.5 ± 0.7 21.7 ± 0.5 25.2 ± 2.1

SSPCA 66.7 ± 21.4 71.5 ± 20 86.7 ± 14.2 95.6 ± 8.9 98.2 ± 7.2

GSPPCA 86.8 ± 7.06 93.9 ± 3.66 97.2 ± 2.55 99.2 ± 1.4 1 ± 0

Table 2: F-score×100 for the model selection experiment of subsection 3.3 with Laplacian
noise

n = p/5 n = p/4 n = ⌊p/3⌋ n = p/2 n = p

SPCA 20.8 ± 0.6 21.3 ± 0.6 21.6 ± 0.8 21.8 ± 0.6 25.3 ± 1.7

SSPCA 60.6 ± 22.4 63.9 ± 25.2 82.7 ± 18.1 94.2 ± 10.2 97.4 ± 9.5

GSPPCA 74.2 ± 10 77.6 ± 9.09 79.7 ± 8.38 88 ± 5.95 99.2 ± 1.4

Explained variance We consider the breast cancer data base from the breastCancerVDX
R package (Schroeder et al., 2011), consisting in expression levels of p = 5391 genes for n =
344 breast cancer patients. More details regarding this data set – including the preprocessing
technique used – are given in Appendix F. Given a cardinality q, we applied three methods
to select relevant genes:

• we computed the first q-sparse principal component using SPCA (Zou et al., 2006)

• we computed the support of the globally q-sparse subspace of dimension d = 10 using
GSPPCA and SSPCA

For each method, we projected the data onto a 10-dimensional globally q-sparse subspace
using the sparsity pattern found by the algorithm and computed the percentage of explained
variance using the criterion introduced by Shen and Huang (2008) – for each method, we
applied the post-processing technique of Moghaddam et al. (2005). The results are plotted
on Figure 3.4. It is important to notice that both global methods explain much more variance
than SPCA. This fact is not surprising since the data is indeed projected onto a globally
sparse subspace, but the significance of this variance gap highlights the fact that different
dimensions lead to very different sparsity patterns. This means that projecting the data onto
a single sparse axis is likely to lead to an important information loss (this fact is confirmed
in section 5). The variables selected by GSPPCA retain significantly more variance than
the ones selected by SSPCA, and may consequently be of superior interest.

Interpretability Inspired by Hastie et al. (2015, section 8.2.3.1), we consider the problem
of learning which features are relevant on three data sets of handwritten digits. We consider
n = 500 gray-scale images (with p = 758 pixels) of handwritten sevens from three data sets
introduced by Larochelle et al. (2007):

• mnist-basic which is simply a subsample of sevens from the original MNIST data set,
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Benchmark: global vs. local sparsity

Here, we illustrate the difference between global and local sparsity:

� on a set of OCR images from
Larochelle et al. (2007), which
are variations around the famous
MNIST data,

� we have 3 types of images:
� handwritten 7s,
� 7s with noisy background,
� 7s with natural image

background,

� in each case, n = 500 and
p = 758.

Globally Sparse Probabilistic PCA

Table 3: Variable selection of SPCA and GSPPCA for the three datasets of Larochelle et al.
(2007), selected variables are in white

mnist-basic mnist-back-rand mnist-back-image

Sample

SPCA

SSPCA

GSPPCA

noise with zero mean and 0.2 standard deviation. The Haar wavelet is used here for
signal reconstruction.

• Scenario B: the original signal is here a mixture of 4 Gaussian densities. The observed
signal is also sampled with a time step of 5 × 10−3 with an additional Gaussian noise
with zero mean and 0.2 standard deviation. The Daubechies D8 wavelet is used here
for signal reconstruction.

Figure 4 presents the original signals and observed signals for scenarios A and B. In both
cases, n = 100 signals were sampled during the training phase and decomposed as p =
175 wavelet coefficients. For signal denoising, GSPPCA is applied on the n × p wavelet
coefficient matrix to extract d = 10 globally sparse principal axes. Then, a new sampled
signal is projected on those extracted principal axes and back-projected in the original
wavelet domain. It is worth mentioning that the estimated value for q = ∥v∥0 is 17 on
scenario A and 15 on scenario B.

As an illustration, we plotted on Figure 4 the denoising results for newly sampled signals
A and B with GSPPCA. We used the same projection-reconstruction protocol for PCA,
thresholded PCA (PCA loading smaller than 1 × 10−3 are set to 0) and SPCA (λ is chosen
such that 99% of the PCA projected variance is conserved). Denoising results obtained with
those methods are also supplied on Figure 4. First, on both signal A and B, PCA achieves
a very satisfying denoising and thus confirms his validity in this context. One can also show
that a simple thresholding of the PCA loadings allows a clear denoising improvement and
turns out to be competitive with the one performed by SPCA. The SPCA result is here
somehow disappointing due to the fact that the sparsity is not global and most wavelet
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Problem and data

We focus here on the diagnostic of chronic kidney disease (CKD):
� data come from the Nephrology Department of the Georges Pompidou

European Hospital (Paris, France),
� collaboration with Pr. Ph. Beaune, Dr. N. Pallet (Biochimie, HEGP) &

Dr. G. Bertho (Plateforme RMN, Paris Descartes),
� the cohort is made of 110 CKD patients followed for renal biopsy

between 2013 and 2014,
� for each patient, urine and serum samples were collected.

Beyond the diagnostic problem, the main goal of study is to isolate some
urinary metabolites which are early-stage markers of the disease (class #3).
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Problem and data

The CKD data set:
� 4 stages of CKD severity are

defined according to creatinine
rates,

� each urine sample was measured
at 300K on a Bruker Avance II
spectrometer,

� we end up with 110 spectra of
816 variables split into 4 classes.
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Globally sparse HDDA

We introduce a new globally sparse discriminant analysis technique:
� HDDA (Bouveyron et al, ’06) is a discriminant analysis method for

high-dimensional data which assumes that the data of each class live in a
specific low-dimensional subspace,

� gsHDDA combines the idea of gsPPCA and HDDA.

The gsHDDA model assumes that:

Y|Z=k = VkWkX + µk + ε,

� where ‖diag(Vk)‖0 = qk , X|Z=k ∼ N (0,∆k) and ε|Z=k ∼ N (0, βk Ip),
� such that Y|Z=k ∼ N (µk ,Σk) where Σk = Wk∆kW

t
k + βk Ip has a

low-rank structure.
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Classification results

We first evaluate the diagnostic ability of gsHDDA, in comparison with
reference methods:
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Figure: Correct classification rate for gsHDDA and competitors on CKD data.
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Variable selection results
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Figure: Variable selection for each class of the CKD data using gsHDDA.
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Variable selection results

0 200 400 600 800

0
2

4
6

8
10

Class 1

0 200 400 600 800

0
2

4
6

8
10

Class 2

0 200 400 600 800

0
2

4
6

8
10

Class 3

0 200 400 600 800

0
2

4
6

8
10

Class 4

Figure: Specific variable selection for each class of the CKD data using gsHDDA.
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Conclusion and further work
The proposed approach gsPPCA:
� we proposed a Bayesian procedure that allows to obtain several sparse

components with the same sparsity pattern,
� this allows the practitioner to identify the original variables which are

relevant to describe the data,
� we provided the first exact computation of the marginal likelihood of a

Bayesian PCA model,
� a simple relaxation allows to find a path of models using a variational

expectation-maximization algorithm.

Working in progress and further work:
� gsHDDA for class-specific variable selection and classification,
� selection of the intrinsic dimensionality d of the data (work in progress),
� mixture of gsPPCAs for clustering of high-dimensional data.

Preprint & R code: up5.fr/GSPPCA
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