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“If	the	design	of	an	experiment	is	faulty,	any	method	of	interpretation	which	
makes	it	out	to	be	decisive,	must	be	faulty	too.	It	is	true	that	there	are	a	
great	many	experimental	procedures	which	are	well	designed,	in	that	they	
may	lead	to	decisive	conclusions,	but	in	other	occasion	may	fail	to	do	so;	in	
such	cases,	if	decisive	conclusions	are	in	fact	drawn	when	they	are	
unjustified,	we	may	say	that	the	fault	is	wholly	in	the	interpretation,	not	in	
the	design.	But	the	fault	in	the	interpretation,	even	in	these	cases,	lies	in	
overlooking	the	characteristic	features	of	the	design,	which	lead	to	the	result	
being	sometimes	inconclusive,	or	conclusive	on	some	questions	but	not	on	
all.	To	understand	correctly	the	one	aspect	of	the	problem	is	to	understand	
the	other.	Statistical	procedure	and	experimental	design	are	only	two	
different	aspects	of	the	same	whole,	and	that	whole	comprises	all	the	
logical	requirements	of	the	complete	process	of	adding	to	natural	
knowledge	by	experimentation.”

R.A.	Fisher	(1936)
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Interpreting univariate results of	ED:	ANOVA

• Assumes	the	additivity of	the	main	effects	of	the	controlled	
factors	and	their	interactions.

• For	2	factors:

• where:
– i=1:I	levels	of	the	first	factors
– j=1:J	levels	of	the	second	factor
– k=1:K	replicates	of	each	design	point

• If	only	a	single	replicate	(k=1):

x ijk= µ +α i + β j + αβ( )ij + ε ijk

(αβ )ij ≡ ε ij
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More	on	univariate ANOVA

• Solution	is	not	unique	and	there’s	need	of	constraints:	

• Accordingly:

α ii=1

I∑ = 0

β jj=1

J∑ = 0

αβ( )iji=1

I∑ = 0    ∀j

αβ( )ijj=1

J∑ = 0    ∀i

µ→ x..
α i → xi. − x..
β j → x. j − x..
(αβ )ij → xij − xi. − x. j + x..
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ANOVA:	Hypothesis testing

• The	null	hypothesis	H0:

• The	total	sum	of	squares	is	decomposed	in	the	sum	of	individual	
terms:

• Significance	is	(usually)	estimated	by	means	of	F	test:

α1 =α 2 = ...=α I

x − µ 2= α 2+ β 2+ αβ 2

xij − x..( )i, j∑ 2

TSS

= xi. − x..( )
i, j∑ 2

SSα

+ x. j − x..( )i, j∑ 2

SSβ

+ xij − xi. − x. j + x..( )i, j∑ 2

SSαβ ≡SSR

Fα = SSα
SSR

N − I − J +1
I −1

Fβ =
SSβ
SSR

N − I − J +1
J −1
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Going multivariate…
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= + + +

cX aX bX abX resX

Multivariate	ANOVA	decomposition
Estimation of	the	effects

Experiment Factor a Factor b
1 + +
2 + +
3 + -
4 + -
5 - +
6 - +
7 - -
8 - -
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= + + +

cX aX bX abX resX

Multivariate	ANOVA	decomposition
Estimation of	the	effects
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Two way MANOVA as (multivariate multiple) 
regression model
• The MANOVA decomposition 𝒚"#$ = 𝝁 + 𝜶" + 𝜷# + 𝜶𝜷𝒊# + 𝝐"#$	can be also

expressed as regression model:      𝒀 = 𝑿𝑩 +𝑬
𝑿 = 𝟏234 𝑿5 𝑿6 𝑿56	 = 𝟏234 𝑰2⨂𝟏34 𝟏2⨂𝑰3⨂𝟏4 𝑰23⨂𝟏4
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MANOVA
Structureof the model

x ijk

ε ijk

=µ+α i +β j + γ ij + ε ijk

∼ NID(0, Σ)
SSQ PARTITIONING

µ+ α + β + γ2 2 22

S.S Wilks, Biometrika 24 (1932) 471-494
P.L. Hsu, Biometrika 31 (1940) 221-237

T = Bα +Bβ + Bγ +W
TESTING

Λ f =
W

B f +W

− ⎡IJ (n −1)− v +1− ( f −1)⎤
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Two way MANOVA as (multivariate multiple) 
regression model
• The MANOVA decomposition 𝒚"#$ = 𝝁 + 𝜶" + 𝜷# + 𝜶𝜷𝒊# + 𝝐"#$	can be also

expressed as regression model:      𝒀 = 𝑿𝑩 +𝑬
• Accordingly, the model parameters𝑩, i.e. the estimates of factor and 

interaction levels, can be calculated as: 𝑩; = 𝑿<𝑿 =>𝑿<𝒀

• With this formulation, it is also possible to calculate the Hypothesis and 
Error SSCP as: 
– 𝑯5 = 𝒀<𝑿5 𝑿5<𝑿5

=>
𝑿5<𝒀

– 𝑯6 = 𝒀<𝑿6 𝑿6<𝑿6 =>𝑿6<𝒀

– 𝑯56 = 𝒀<𝑿56 𝑿56< 𝑿56
=>
𝑿56< 𝒀

– 𝑬 = 𝒀< 𝑰234 −𝑿 𝑿<𝑿 =>𝑿< 𝒀
• Unfortunately, due to matrix inversion problems, in order to be able to carry

out the tests, inverting the matrix E, it is necessary that 𝐿 ≤ 𝐼𝐽𝐾 − 𝑟𝑎𝑛𝑘 𝑿

• The method is unsuitable for highly multivariate responses → Different
available options
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Structureof the model

X = 1mT +X

Ta+res Tb+res Tab+res

P. Harrington et al., Anal. Chim. Acta 544 (2005) 118-127

EFFECT MATRICES +
RESIDUALS

Xab+res = Xab +Xres

a +X +X +Xb ab res

Xa+res = Xa +Xres

Pa+res
T Pb+res

T Pab+res
T

Xb+res =Xb +Xres

Marini -
Chimiometrie2018
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Structureof the model

P. Harrington et al., Anal. Chim. Acta 544 (2005) 118-127
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Structureof the model
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ANOVA-PCA
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Structureof the model

MULTIBLOCK ANALYSIS (ComDim) 
on the ANOVA-PCA MATRICES

Wtot = λa+resWa+res +λb+resWb+res +λab+resWab+res +λresWres

q1 first common component

1

W = X Xa+res a+res a+res
T

D.J.-R. Bouveresse et al., Chemolab 106 (2009) 173-182

W = X Xb+res b+res b+res ab+res ab+res ab+res res res res
T W = X XT W = X XT

Wtot ≈ λ q qT + λ1 q qT + λ1 q qT + λ1 q qT
a+res 1 1 b+res 1 1 ab+res 1 1 res 1 1

λ = q W qj
1

1 j 1
T

λ1j salience of term j on the first common component
SIGNIFICANCE TESTING
q1 associated mainly to Noise

Fj =
λ1res

λ1j
=

q1T Wres 1q
q W q1

T
j 1
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ASCA
(ANOVA	- Simultaneous Component Analysis)

Structure of the	model and	estimation of the	effects

Marini	- Chimiometrie2018

A.K. Smilde et al., Bioinformatics 21 (2005) 3043-3048
J.J. Jansen et al. J. Chemometr. 19 (2005) 469-481



ASCA	(ANOVA	- Simultaneous Component Analysis)
Structure of	the	model
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SCA
resabba

T XXXX1mX ++++=

=−= T
c 1mXX

aT

T
aP

bT

T
bP

abT

T
abP

+ + resX+

J.J. Jansen et al. J. Chemometr. 19 (2005) 469-481
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= + + +

cX aX bX abX resX

222222
resabba

T
c XXXX1mXX +++=−=

ASCA	(ANOVA	- Simultaneous Component Analysis)
Estimation of the	effects

SUM	OF	SQUARES
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Validation of ASCA
Significance of the	effects



Validation of	effect significance by	permutation tests

• Originally, a non-parametric approach based on permutation tests
was proposed for the validation of the multivariate effects in ASCA.

• Exact permutation tests can be built only for main effects
• Approximate tests can be used for the interactions.

– Permutation of the residuals under the reduced model (similar to Type III
sum of squares)

Marini - Chimiometrie2018
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Permutation tests
• Results	of	permutations	are	used	to	estimate	the	distribution	of	

the	Effect	size	under	the	null	hypothesis

Marini - Chimiometrie2018

2
aX

21perm
aX

22perm
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23perm
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!

M.J.	Anderson,	C.J.F.	ter Braak.	J.	Stat.	Comp.	Simul. 73	
(2003)	85-113



ASCA
(ANOVA	- Simultaneous Component Analysis)

Interpretation of the	effects
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Marini - Chimiometrie2018

T
a a a= =X T P

ASCA
Interpretation of the	effects

aT

T
aP

aX

SCA
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Validation of ASCA
Significance of the	effects:

Graphical evaluation
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Graphical evaluation of	effect significance
• Residuals	of	ANOVA	decomposition	are	projected	back	onto	the	

SCA	model	of	the	Effect	matrix

𝐗;L = 𝐓L𝐏L< 𝐓LO = (𝐗L + 𝐗QRS)𝐏L



ASCA
(ANOVA	- Simultaneous Component	Analysis)

Applications
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Recent researches
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ANOVA-Target Projection (ANOVA-TP)
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ANOVA-TP:	the	algorithm
• Deflate the matrix X according to the reduced model:

XC (defl.)

= - -

X XA XB
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Hasse diagrams

• Hasse diagrams are a powerful tool to define the proper way 
of deflating X to obtain the “reduced” ANOVA model

T

A B

AB

(R)

Crossed design
A,B fixed

T

A (B)

(AB)

(R)

Crossed design
A fixed, B random

T

A

(B)

(R)

Nested design
A fixed, B random
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Hasse diagrams	- 2
• The expected MS for a term U is the sum of the contribution 

of the term + all eligible random terms below it in the diagram
• All random effects not containing a fixed factor not present in 

T are eligible

T

A (B)

(AB)

(R)

Crossed design
A fixed, B random

MSA=A+(AB)+(R)

MSB=(B)+(R)

MSAB= (AB)+(R)

Reduced model is then calculated by deflating 
from X all other contributions
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Hasse diagrams	– The	reduced	ANOVA	model

T

A (C)

(AC)

(R)

Crossed design
A,B fixed, C random

To calculate Remove (deflate)

A B, C, AB, BC 

B A, C, AB, AC

C A, B, AB, AC, BC, ABC

AB A, B, C, AC, BC

AC A, B, C, AB, BC, ABC

BC A, B, C, AB, AC, ABC

ABC A, B, C, AB, AC; BC

Deflation involves all terms up to the row containing the first eligible random 
contribution (denominator in a pseudo-F test)

B

AB (BC)

(ABC)
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ANOVA-TP:	the	algorithm
• Deflate the matrix X according to the reduced model:

• Calculate a D-PLS model between the deflated matrix and the 
dummy Y coding for the design

XC (defl.)

= - -

X XA XB

XC (defl.)

=

YC

x

bC
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ANOVA-TP:	the	algorithm
• Perform Target projection of the D-PLS solution

XhatC

= x

tTP

+

p’TP EC
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PLS	and	Target	projection
• TP reveals the y-relevant variation in the x-variables captured 

by a multicomponent PLS model on a single latent variable.

wTP =
b
b

⇔ tTP =
ŷ
b

• TP loadings may be used for interpretation or to build an 
estimate of the “predictive” part of X

pTP =
XT tTP
tTP
T tTP

X = XTP +ETP = tTPpTP
T +ETP

Marini - Chimiometrie2018
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ANOVA-TP:	the	algorithm
• Perform Target projection of the D-PLS solution

• Evaluate the effect of the factor/interaction and its
significance

XhatC

= x

tTP

+

p’TP EC

Ssq(XTP)

2

Ssq(YhatC-YC)

or -

2

Marini - Chimiometrie2018
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ASCA

ANOVA-TP
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Validation of	ASCA	revisited
A	novel approach based on	confidence ellipsoids



Confidence ellipsoids for LS means
• Based on	the	theory of	multivariate	multiple	regression,	it is

possible to	calculate the	1 − 𝛼 confidence interval around the	LS	
mean according to:	

𝑛 − 𝑞
𝑛𝑎"

𝐱",∗Z 𝐁; − 𝐱",∗Z 𝐁 Σ]=> 𝐱",∗Z 𝐁; − 𝐱",∗Z 𝐁
Z
= 𝑇>=_,`,a=bc

• Where:
– p is the	number of	variables in	Y
– n is the	number of	observations
– q is the	number of	colums in	X
– 𝑎" = 𝐱",∗O 𝐗′𝐗 =>𝐱",∗
– 𝐶𝑜𝑣 𝐞𝒊,∗ = 𝚺
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Confidence ellipsoids for single design terms (factors or 
interactions) in projected space
• These	equations can	be	applied as well to	the	sub-matrices

corresponding to	individual effects 𝐗(3)𝐁(3)

• Where:
– L is the	loadingmatrix
– d is the	number of	rows in	L	(dimensions of	projected space)
– n is the	number of	observations
– 𝑞3 is the	number of	colums in	𝐗(3)

– 𝑎"
(j) = 𝐱",∗

Z(3) 𝐗Z(3)𝐗(3)
=>
𝐱",∗
(3)

– 𝐶𝑜𝑣 𝐞𝒊,∗ = 𝚺

𝑛 − 𝑞3
𝑛𝑎"

(j) 𝐱",∗
Z(3)	𝐁;(3)𝐋Z − 𝐱",∗

Z(3)	𝐁(j)𝐋Z 𝐋𝚺;𝐋Z
=>

𝐋 𝐱",∗
Z(3)	𝐁;(3)

Z
− 𝐋(𝐱",∗

Z(3)	𝐁(j))Z

= 𝑇>=_,l,a=bm
c .
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Examples:
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Pairwise comparison of factor levels:
• Based	on	the	theory it is possible to	perform pairwise

comparisons of	effect levels by	replacing 𝐱",∗
Z(3)	𝐁;(3)with:

(𝐱o,∗
(3)	−𝐱p,∗

3 )Z𝐁;(3)

• And	verifying if the	ellipsoid contains the	origin
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CONCLUSIONS	AND	PERSPECTIVES
• Designed experiments call for appropriate methods

– Partitioning of overall variance
– Significance testing
– Interpretation

• Possible alternatives: 
– rMANOVA
– AMOPLS
– …
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Thanks for	
your attention


