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High Dimensional Experimental Design data

Challenging data analysis

Application to life science data:
From -omics sciences: genomics, transcriptomics, metabolomics
High Dimensional: multivariate; often m variables > n samples
Biological variability, instrumental noise/artifacts
Multicollinearity between variables

Nontrivial Design Of Experiments (DOE):
ex.: longitudinal, multi-centre, cross-over studies, etc.
Presence of random factors (day, lab variation, ...)
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Methods needed to analyse HD designed data

Multivariate projection methods

- PCA, ICA, (O)PLS, ...
- Disadvantages:

Simple exp. designs (e.g. 2 groups comparison)

Few statistical modelling and tests

Statistical regression methods

Depends on the response dimension:
y(1�m): linear or logistic regression, ANOVA, mixed models
Y(n�m) with m < n: MANOVA, multivariate-GLM

But often mo n) need to combine dimension reduction and statistical
modelling.
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ASCA methodology

) Combine the dimension reduction methods
and statistical modelling [Jansen et al., 2005]:

ANOVA-Simultaneous Components Analysis (ASCA)

Example: crossed ANOVA II model:
yijk = �:: + �i + �j + (��)ij + �ijk

STEP 1: Parallel ANOVA decomposition of Y
Y(n�m) is decomposed into effect matrices:

Y = M̂0 + M̂A + M̂B + M̂AB + Ê

STEP 2: (Residual-Augmented) effect matrices
visualisation

ASCA: Mf = TfP
′
f APCA: Mf +E = T̃f P̃

′
f

STEP 3: Effect importance quantification based on
Frobenius norms jjMf jj

2

STEP 4: Global measure of effect significance based on
permutation tests
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Limitations with classic ASCA and new developments

1. Balanced ANOVA designs with fixed factors

) Generalisation to unbalanced data with fixed and random factors

2. // ANOVA does not take into account the correlation between the responses

) Prior PCA reduction & back-transformations

3. Permutation tests implementation is challenging for advanced DOE
[Anderson and Braak, 2003]

) Use of alternative test strategies: Likelihood ratio tests & bootstrap
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APCA+ for unbalanced designs (Thiel et al. [2017], Guisset et al. [Submitted])
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Mixed Models for High Dimensional Designed Data (MiMoHD3)
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The Metabiose repeatability datasets

Context:
Urine and Serum 1H-NMR spectral data from control and endometriosis patients

Statistical perspective of spectral reproducibility/repeatability and quality control: not yet well
studied in metabolomics

Unbalanced design for the Serum dataset

3 factors:
1 fixed: groups (G; 2)

2 random: patients (P; 7/group) &
repetitions over weeks (W; 3)

Main research questions:
Compare the groups

Quantify the variability of the
repetitions and the patients

Test the significance of these
random/fixed effects

Experimental design
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Step 0: Prior PCA dimension reduction (1)
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Step 0: Prior PCA dimension reduction (2)

Transform the highly correlated response matrix into a reduced number of orthogonal
components without information loss

PCA dimension reduction on the response matrix Y = TCP
′
C + F

Keep C = 11 first Principal Components (PC) with
P

C
var(PC) � 99%
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Step 1: Parallel mixed models on Tn�C
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General framework for mixed models

Fixed + random factors vs linear regression (only 1 source of random variation)

The mixed model for one response tc can be written as:

Variance components = �
2
P + �

2
R + �

2

Drop the hypothesis of independence between the samples
) model advanced designs

Coding: Sum coding for fixed and dummy coding for random effects

Typical applications: Multicentre study, Multilevel data, Repeated data, etc.

Parameters are estimated with the Restricted Maximum Likelihood (REML) method
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Step 2: PCA decomposition of (RA) effect matrices
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PCA on fixed/random pure effect matrices
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PCA on fixed/random Residual-Augmented effect matrices

In APCA: E added to Mf

But which variance components should be added for mixed models?

Solution: RA effect matrices based on the ANOVA F-tests (Expected Mean Squares
ratio)

M̃G = MG+MP +E

M̃P = MP+E

M̃R = MR+E
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Steps 3 & 4: Global measure of factor importance/significance
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Step 3: Quantification of effect importance

For each response tc, c = 1; ::; C:

Random effects: Variance components

�̂2P;c; �̂
2
R;c; �̂

2
c

Fixed effects [Nakagawa and Schielzeth, 2013]:

�̂2G;c = var(�̂G;cxG)

For all tc responses:

Total variance:

�̂2tot =
PC

c=1
(�̂2G;c + �̂2P;c + �̂2R;c + �̂2c )

Serum Urine

Group
Patient
Repetition
Residuals

Variance components percentage

Medium

0
20

40
60

80

Serum Urine
Group 14.32 2.4
Patient 64.03 91.48
Repetition 0.6 0
Residuals 21.05 6.12

Effect importance percentage
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Step 4: Global measure of effect significance

Likelihood Ratio Test (LRT)
Test the significance of a fixed/random effect in a (mixed) linear model
Compare the likelihoods L between nested models

LRT statistic: 2[log(Lfull)� log(Lnull)] �H0
�2
df

a Global LRT (GLRT)
The test statistic for a fixed/random effect matrix

GLRT statistic: 2[
PC

c=1
(log(Lfull;c)� log(Lnull;c))] �H0

�2
C�df

Assess the significance of an effect based on:

The �2 distribution with known df (fixed effects)
bootstrap simulations (fixed/random effects)
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Histograms of bootstrapped GLRT (Nsim = 2000)

 Fixed Group effect − Serum
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Histograms of boostraped GLRT (Nsim = 2000)

Random Patient effect − Serum
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In summary

MiMoHD3, a combination of mixed models & multivariate projection methods

Innovative extension and generalisation in the ASCA(+) framework

Enable to model unbalanced designs with random factors

Take into account the correlation between the response variables

Global test of effect significance

Quantification and comparison of the mixed variability sources

Targeted applications: repeatability/reproductibility study & longitudinal data
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