Combining ASCA and mixed models to analyse high dimensional designed data

M. Martin1 P. De Tullio2 B. Govaerts1

1Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA), Université catholique de Louvain (UCL), Belgium

2Laboratoire de Chimie Pharmaceutique, Université de Liège (ULg), Liège 1, Belgium

January 30, 2018
High Dimensional Experimental Design data

Challenging data analysis

Application to life science data:
- From -omics sciences: genomics, transcriptomics, metabolomics
- High Dimensional: multivariate; often m variables > n samples
- Biological variability, instrumental noise/artifacts
- Multicollinearity between variables

Nontrivial Design Of Experiments (DOE):
- ex.: longitudinal, multi-centre, cross-over studies, etc.
- Presence of random factors (day, lab variation, …)
Table of content

- High Dimensional designed data analysis
- ASCA methodology
- Extension to mixed models: description & application
Methods needed to analyse HD designed data

Multivariate projection methods

- PCA, ICA, (O)PLS, ...
- Disadvantages:
 - Simple exp. designs (e.g. 2 groups comparison)
 - Few statistical modelling and tests

Statistical regression methods

Depends on the response dimension:

- $y_{(1 \times m)}$: linear or logistic regression, ANOVA, mixed models
- $Y_{(n \times m)}$ with $m < n$: MANOVA, multivariate-GLM

But often $m \gg n \Rightarrow$ need to combine dimension reduction and statistical modelling.
ASCA methodology

⇒ Combine the dimension reduction methods and statistical modelling [Jansen et al., 2005]:

ANOVA-Simultaneous Components Analysis (ASCA)

Example: **crossed ANOVA II model**:

\[
y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk}
\]

STEP 1: Parallel ANOVA decomposition of \(Y \)

\(Y_{(n \times m)} \) is decomposed into effect matrices:

\[
Y = \hat{M}_0 + \hat{M}_A + \hat{M}_B + \hat{M}_{AB} + \hat{E}
\]

STEP 2: (Residual-Augmented) effect matrices visualisation

ASCA: \(M_f = T_f P'_f \)

APCA: \(M_f + E = \tilde{T}_f \tilde{P}'_f \)

STEP 3: Effect importance quantification based on Frobenius norms \(||M_f||^2 \)

STEP 4: Global measure of effect significance based on permutation tests
Limitations with classic ASCA and new developments

1. **Balanced** ANOVA designs with **fixed factors**
 ⇒ Generalisation to **unbalanced** data with fixed and **random** factors

2. ANOVA does not take into account the **correlation** between the responses
 ⇒ Prior **PCA** reduction & back-transformations

3. **Permutation tests** implementation is challenging for advanced DOE
 [Anderson and Braak, 2003]
 ⇒ Use of alternative test strategies: **Likelihood ratio tests & bootstrap**
APCA+ for unbalanced designs (Thiel et al. [2017], Guisset et al. [Submitted])

Response matrix Y

$\text{Design X sum coding}$

Model terms θ

General Linear Model

$Y = X\theta + E$

Effect matrix decomposition

$Y = \widehat{M}_0 + \widehat{M}_A + \widehat{M}_B + \widehat{M}_{AB} + \widehat{E}$

PCA on (RA) effect matrices

Importance measures

Significance tests

<table>
<thead>
<tr>
<th></th>
<th>% Var</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor A</td>
<td>18.1</td>
<td>0.000</td>
</tr>
<tr>
<td>Factor B</td>
<td>12.1</td>
<td>0.004</td>
</tr>
<tr>
<td>Interaction AB</td>
<td>1.0</td>
<td>0.950</td>
</tr>
<tr>
<td>Error</td>
<td>53.9</td>
<td></td>
</tr>
</tbody>
</table>
Mixed Models for High Dimensional Designed Data (MiMoHD3)

Response matrix Y

PCA dimension reduction

$Y = T_CP_C' + F$

Design

X sum coding

Z dummy coding

Model terms $\theta; \Gamma$

Parallel linear mixed models

$T_C = X\theta + Z\Gamma + E$

Effect matrix decomposition

$\hat{T}_C = \hat{M}_{f1} + \hat{M}_{f2} + \ldots + \hat{M}_{r1} + \hat{M}_{r2} + \ldots + \hat{E}$

Back transformation

PCA on (RA) effect matrices

Importance measures

Significance measures
The Metabiose repeatability datasets

Context:
- Urine and Serum 1H-NMR spectral data from control and endometriosis patients
- Statistical perspective of spectral reproducibility/repeatability and quality control: not yet well studied in metabolomics
- Unbalanced design for the Serum dataset

3 factors:
- 1 fixed: groups (G; 2)
- 2 random: patients (P; 7/group) & repetitions over weeks (W; 3)

Main research questions:
- Compare the groups
- Quantify the variability of the repetitions and the patients
- Test the significance of these random/fixed effects
Step 0: Prior PCA dimension reduction (1)

Response matrix Y

PCA dimension reduction

$Y = T_c P_c' + F$

Design

X sum coding

Z dummy coding

Model terms $\theta ; \Gamma$

Parallel linear mixed models

$T_c = X\theta + Z\Gamma + E$

Effect matrix decomposition

$\hat{T}_c = \hat{M}_{f1} + \hat{M}_{f2} + ... + \hat{M}_{r1} + \hat{M}_{r2} + ... + \hat{E}$

Back transformation

PCA on (RA) effect matrices

Importance measures

Significance measures
Step 0: Prior PCA dimension reduction (2)

Transform the highly correlated response matrix into a reduced number of orthogonal components without information loss

PCA dimension reduction on the response matrix $Y = T_C P_C^t + F$

Keep $C = 11$ first Principal Components (PC) with $\sum_C \text{var}(PC) \geq 99\%$

![Scores plot – Serum](image1)

![Scores plot – Serum](image2)

![Scores plot – Serum](image3)
Step 1: Parallel mixed models on $T_n \times C$

Response matrix Y

PCA dimension reduction $Y = T_c P_c' + F$

Design
- X sum coding
- Z dummy coding

Model terms $\theta ; \Gamma$

Parallel linear mixed models
$T_c = X\theta + Z\Gamma + E$

Effect matrix decomposition
$\hat{T}_c = \hat{M}_{f1} + \hat{M}_{f2} + \ldots + \hat{M}_{r1} + \hat{M}_{r2} + \ldots + \hat{E}$

Back transformation
PCA on (RA) effect matrices
Importance measures
Significance measures
General framework for mixed models

Fixed + random factors vs linear regression (only 1 source of random variation)

The mixed model for one response t_c can be written as:

$$t_c = X\beta + Z\gamma + \epsilon$$

- Fixed Group effect
- Random Patient effect
- Random Repetition effect
- Random residuals

Variance components

$$= \sigma_p^2 + \sigma_R^2 + \sigma^2$$

- Drop the hypothesis of independence between the samples
 \Rightarrow model advanced designs
- Coding: Sum coding for fixed and dummy coding for random effects
- Typical applications: Multicentre study, Multilevel data, Repeated data, etc.
- Parameters are estimated with the Restricted Maximum Likelihood (REML) method
Step 2: PCA decomposition of (RA) effect matrices

Response matrix Y

$$Y = T_c P_c' + F$$

PCA dimension reduction

Design
- X sum coding
- Z dummy coding

Model terms $\theta ; \Gamma$

Parallel linear mixed models

$$T_c = X\theta + Z\Gamma + E$$

Effect matrix decomposition

$$\hat{T}_c = \hat{M}_{f1} + \hat{M}_{f2} + \ldots + \hat{M}_{r1} + \hat{M}_{r2} + \ldots + \hat{E}$$

Back transformation

PCA on (RA) effect matrices

Importance measures

Significance measures
PCA on fixed/random pure effect matrices

Scores plot – Group effect – Serum

Scores plot – Repetition effect – Serum

Scores plot – Patient effect – Serum

Loadings plot – Group effect – Serum

Loadings plot – Repetition effect – Serum

Loadings plot – Patient effect – Serum
PCA on fixed/random Residual-Augmented effect matrices

In APCA: \(E \) added to \(M_f \)

But which variance components should be added for mixed models?

Solution: RA effect matrices based on the ANOVA F-tests (Expected Mean Squares ratio)

\[
\tilde{M}_G = M_G + M_P + E \\
\tilde{M}_P = M_P + E \\
\tilde{M}_R = M_R + E
\]

Scores plot – RA Group effect – Serum

Scores plot – RA Repetition effect – Serum

Scores plot – RA Patient effect – Serum
Steps 3 & 4: Global measure of factor importance/significance

Response matrix \mathbf{Y}

PCA dimension reduction

$$\mathbf{Y} = \mathbf{T}_c \mathbf{P}_c' + \mathbf{F}$$

Design
- \mathbf{X} sum coding
- \mathbf{Z} dummy coding

Model terms $\mathbf{\theta} ; \mathbf{\Gamma}$

Parallel linear mixed models

$$\mathbf{T}_c = \mathbf{X}\mathbf{\theta} + \mathbf{Z}\mathbf{\Gamma} + \mathbf{E}$$

Effect matrix decomposition

$$\hat{\mathbf{T}}_c = \hat{\mathbf{M}}_{f1} + \hat{\mathbf{M}}_{f2} + \ldots + \hat{\mathbf{M}}_{r1} + \hat{\mathbf{M}}_{r2} + \ldots + \hat{\mathbf{E}}$$

- **Back transformation**
- **PCA on (RA) effect matrices**
- **Importance measures**
- **Significance measures**
Step 3: Quantification of effect importance

For each response $t_c, c = 1, \ldots, C$:

Random effects: Variance components

$$\hat{\sigma}^2_{P,c}; \hat{\sigma}^2_{R,c}; \hat{\sigma}^2_c$$

Fixed effects [Nakagawa and Schielzeth, 2013]:

$$\hat{\sigma}^2_{G,c} = \text{var}(\hat{\beta}_{G,c} x_G)$$

For all t_c responses:

Total variance:

$$\hat{\sigma}^2_{tot} = \sum_{c=1}^{C} (\hat{\sigma}^2_{G,c} + \hat{\sigma}^2_{P,c} + \hat{\sigma}^2_{R,c} + \hat{\sigma}^2_c)$$
Step 4: Global measure of effect significance

- **Likelihood Ratio Test (LRT)**
 Test the significance of a fixed/random effect in a (mixed) linear model
 Compare the likelihoods L between nested models

 \[\text{LRT statistic: } 2[\log (L_{\text{full}}) - \log (L_{\text{null}})] \sim_{H_0} \chi^2_{df} \]

- **a Global LRT (GLRT)**
 The test statistic for a fixed/random effect matrix

 \[\text{GLRT statistic: } 2[\sum_{c=1}^{C} (\log (L_{\text{full},c}) - \log (L_{\text{null},c}))] \sim_{H_0} \chi^2_{C \times df} \]

- Assess the significance of an effect based on:
 - The χ^2 distribution with known df (fixed effects)
 - **bootstrap simulations** (fixed/random effects)
Histograms of bootstrapped GLRT ($N_{sim} = 2000$)

Fixed Group effect – Serum
- True GLRT: 8.93
- p-val: 0.72

Fixed Group effect – Urine
- True GLRT: 15.61
- p-val: 0.365
Histograms of bootstrapped GLRT ($N_{sim} = 2000$)

Random Patient effect – Serum
- True GLRT: 112.44
- Kernel density
- p-val: 0***

Random Repetition effect – Serum
- True GLRT: 2.01
- Kernel density
- p-val: 0.84

Random Patient effect – Urine
- True GLRT: 850.15
- Kernel density
- p-val: 0***

Random Repetition effect – Urine
- True GLRT: 0
- Kernel density
- p-val: 1
MiMoHD3, a combination of mixed models & multivariate projection methods

- Innovative extension and *generalisation* in the ASCA(+) framework
- Enable to model *unbalanced designs* with *random* factors
- Take into account the *correlation* between the response variables
- Global test of *effect significance*
- Quantification and comparison of the *mixed variability sources*
- Targeted *applications*: repeatability/reproducibility study & longitudinal data
References

