

Détermination du nombre optimal de composantes dans l'Analyse en Composantes Indépendantes

Amine Kassouf¹ <u>Delphine Jouan-Rimbaud Bouveresse^{2,3}</u> Douglas N. Rutledge²

¹ Département de Chimie et de Biochimie, Faculté des Sciences II, Université Libanaise, 90656 Jdeideth El Matn, Fanar, Liban.
² UMR Ingénierie Procédés Aliments, AgroParisTech, INRA, Université Paris-Saclay, F-91300 Massy, France.
³ UMR 914 Physiologie de la Nutrition et du Comportement Alimentaire, INRA, AgroParisTech, Université Paris-Saclay, F-75005 Paris

- Plan
 - Introduction
 - Aperçu théorique
 - ICA_by_blocks
 - Random_ICA
 - Critère de Durbin-Watson: DW_Residuals
 - Indice de Kaiser-Meyer-Olkin: KMO_ICA_Residuals
 - ICA_corr_y
 - Applications
 - Conclusion

Introduction

- Analyse en composantes indépendantes (ICA): technique de séparation en aveugle de sources.
- Elle consiste à estimer F signaux sources, statistiquement indépendants, à partir de n signaux observés, considérés comme étant des combinaisons linéaires de ces signaux sources.

Introduction

Pourquoi déterminer le nombre optimal de composantes indépendantes (ICs)

- Les ICs ne sont pas classées par ordre d'importance.
- Calculer trop peu d'ICs → des signaux non-purs.
- Extraire trop d'ICs \rightarrow sur-décomposition des signaux / introduction de bruit.

Aperçu théorique: ICA_by_blocks

Jouan-Rimbaud Bouveresse et al. Chem. Intell. Lab. Syst. 2012

Problème avec la méthode

Lignin data (58 × 260)

ICA_by_Blocks, B = 2

Aperçu théorique: Random_ICA

Kassouf et al. Talanta. 2018

Random_ICA avec 100 répétitions

Lignin data (58 × 260)

Nombre de signaux extraits

Aperçu théorique: Critère de Durbin-Watson

Jouan-Rimbaud Bouveresse et al. Chem. Intell. Lab. Syst. 2012

Critère de Durbin-Watson (DW)

s est un signal, s(i) est le ième point du signal

- DW tend vers 0 s'il n'y a pas de bruit dans le signal
- DW tend vers 2 s'il n'y a que du bruit dans le signal

Aperçu théorique: Critère de Durbin-Watson

Calcul du critère DW pour chaque signal résiduel (ligne de **R**)

On suit l'évolution des critères DW en fonction du nombre d'ICs dans le modèle

Durbin-Watson

Lignin data (58 × 260)

Nombre de signaux extraits

Kassouf et al. Talanta. 2018

Indice de Kaiser-Meyer-Olkin :

$$KMO = \frac{\sum_{i} \sum_{j \neq i} r_{ij}^{2}}{\sum_{i} \sum_{j \neq i} r_{ij}^{2} + \sum_{i} \sum_{j \neq i} a_{ij}^{2}}$$
$$a_{ij} = -\frac{\nu_{ij}}{\sqrt{\nu_{ii} + \nu_{jj}}}$$

$0 \leq KMO \leq 1$

r_{ii} : corrélation entre les variables i et j

 a_{ii} : corrélation partielle entre les variables *i* et *j*

- KMO \approx 0: Il n'y a pas de corrélation entre les variables
- KMO \approx 1: Les variables sont corrélées

L'indice KMO est utilisé pour déterminer s'il est utile d'appliquer une Analyse en Composantes Principales à un jeu de données.

Aperçu théorique: KMO_ICA_Residuals

Kassouf et al. Talanta. 2018

KMO_ICA_Residuals

Lignin data (58 × 260)

Aperçu théorique: ICA_corr_y

ICA_corr_y

Lignin data (58 × 260)

Nombre de signaux extraits

Nombre de signaux extraits

Application: données simulées

Kassouf et al. Talanta. 2018

Données IR simulées X (100,800)

Application: données simulées

Application: données simulées

Application: données expérimentales

Kassouf et al. Talanta. 2018

Application: données expérimentales

Kassouf et al. Talanta. 2018

Conclusion

- La détermination du nombre de composantes indépendantes est un facteur essentiel
- Il existe plusieurs méthodes complémentaires:
 - Le critère de Durbin-Watson permet de voir le nombre de signaux source dans chaque signal; MAIS il n'est applicable qu'aux données structurées
 - La méthode Random_ICA est plus performante qu'ICA_by_blocks
 - La méthode KMO_ICA_Residuals donne des résultats similaires à Random_ICA
 - La méthode ICA_corr_y est utile quand une variable connue existe
- Toutes ces méthodes peuvent être appliquées à l'Analyse en Composantes Principales

Merci pour votre attention

delphine.bouveresse@agroparistech.fr

aminekassouf@hotmail.com

rutledge@agroparistech.fr

Lebanese University

Sciences et Technologie

Multi_ICA_corr_y

Lignin data (58 × 260)

T P^t B